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Abstract. A fresh and critical look has been given to the long-time behaviour of the quantum diffusion
problem and a marginally more accurate solution has been obtained as compared to the one reported in
the recent literature. Attempt has also been made to bring out a few interesting generic features of this
problem which may have important bearing on real systems in the quantum domain.

PACS. 03.65.-w Quantum mechanics – 02.40.Xx Singularity theory – 71.23.Ft Quasicrystals – 71.30.+h
Metal-insulator transitions and other electronic transitions

The long-time dynamical behaviour of wave packets of
quantum systems is essentially a diffusion problem but
in the quantum regime and therefore can be termed as
quantum diffusion in a more general sense which in-
cludes on one hand the classical diffusion together with
super-diffusive regime leading to ballistic motion and on
the other the sub-diffusive regime leading to localiza-
tion. There have been several investigations [1–11] on
these issues primarily because of their importance in low-
dimensional systems such as carbon nanotubes and sev-
eral other systems and various interesting aspects of this
problem have been studied in great detail in recent years.
However, still, quite a lot of issues have remained unan-
swered and these require critical investigations to test the
veracity of the fundamental quantum mechanical ideas at
the laboratory level. Recently, Zhong et al. [12] have stud-
ied the shape of a quantum diffusive front and have shown
that after an initial transient the wave packet front is de-
scribed by a stretched exponential. They have provided
an analytical derivation for the stretched exponential ex-
pression of the probability distribution using the mem-
ory function formalism of quantum dynamics, and have
uncovered a universal relation between the shape expo-
nent and the diffusion constant. They have demonstrated
their results through numerical work on one-dimensional
quasi-periodic systems and the three-dimensional Ander-
son model of disorder. They have also applied their re-
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sults to some experimental results and have shown that
their solution describes the experimental data pretty well.
This work is in essence complementary to the work of
Ketzmerich et al. [11] which is valid at smaller length
scales. In the present paper we will give a fresh look at
the quantum diffusion problem as studied in [12] and make
an attempt to generalize their results and improve their
analysis to obtain a more accurate solution and discuss
the range of its validity. We shall also bring out a few
more interesting features of this problem that have not
been studied so far and that may have some important
bearing on real systems.

The nontrivial time-evolution of any lattice model is
given in the Schrödinger picture by the time-dependent
Schrödinger equation

ι�
∂Ψ(n, t)

∂t
= [T (n) + V (n)]Ψ(n, t), (1)

where T (n, t) and V (n, t) are respectively the kinetic and
potential energies at the lattice site n and at time t. Equa-
tion (1) can be rewritten as

ι�
∂Ψ(n, t)

∂t
= V (n)Ψ(n, t) +

∑

n′
h(n, n′)Ψ(n′, t), (2)

where h(n, n′) = 〈n′|T (n′)|n〉 is the nearest neighbour
hopping integral. Given any lattice potential V (n) one can
integrate equation (2) numerically to obtain Ψ(n, t) and
finally calculate the probability P (n, t) = |Ψ(n, t)|2 which
gives the spreading of the wave packet pertaining to the
system. Zhong et al. [12] have obtained P as a function
of x for different model systems and have shown that the
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probability distribution P (x, t) at long time is described
by stretched exponential with a time-dependent exponent
which has a universal relation with the scaling exponent
of the spreading width. They have also given an analyt-
ical expression for P (x, t) which fits pretty well with the
numerical results obtained for the Fibonici chain and the
three-dimensional Anderson model and with the experi-
mental results for the quantum kicked rotor. We shall in
the following go through their derivation rather critically
and in the process make an attempt to modify their ex-
pression and point out the more accurate condition under
which their expression should be valid.

The generalized master equation (GME) for the prob-
ability distribution is given in the memory function for-
malism by [12]

ι�
∂P (n, t)

∂t
=

∫
dt′

∑

n′
W (n, n′, t − t′)∆P (n′, n, t′), (3)

where ∆P (n′, n, t′) = P (n′, t′)− P (n, t′) and W (n, n′, t−
t′) is called the memory function. Another way to handle
the problem would be to find out the Green function of
the problem and then write,

Ψ(n′, t′) =
∑

n

G(n′, t′, n, t)Ψ(n, t). (4)

It may be easier to work in the continuum limit and hence
Zhong et al. have made a coarse grained averaging over the
position n and written the GME in terms of the coarse
grained position x. After a gradient expansion of ∆P in
∆x and assuming a slow variation of density with space
and homogeneity in time and isotropic diffusion, they have
obtained

ι�
∂P (x, t)

∂t
=

∫
dt′I(t − t′)(

∂2P

∂x2
)∆x=0, (5)

where
I(t) = (1/2)Σ∆xg(∆x, t)(∆x)2, (6)

with g(∆x, t) being the coarse-grained average of the
memory function. Defining Laplace transforms,

P̃ (x, s) =
∫

dtP (x, t)e−ts, (7)

Ĩ(x, s) =
∫

dtI(t)e−ts, (8)

and the corresponding inverse transforms, one gets,

∂2P̃ (x, s)
∂x2

= f2(s)P̃ (x, s), (9)

where f(s) =
√

[s/Ĩ(s)]. The solution of equation (9) is
simple and straight-forward integration gives,

P̃ (x, s) = B(s)e−|x|f(s), (10)

where the normalization constant B(s) = f(s)/2. The
probability P (x, t) is given by,

P (x, t) =
1

4πι

∫ δ+ι∞

δ−ι∞
dsf(s)e[st−|x|f(s)]. (11)

Stipulating f(s) = f0s
β in the limit s → 0 and using the

stationary phase approximation we get,

β|x|f0s
β − st − β = 0, (12)

where 0 < β < 1 and we are looking for the long-time
behaviour for which β/t � 1. Also, we have the condition
that s → 0 and therefore solving the above equation be-
comes a tricky problem. However if we can assume that
β � s/t which could be plausible in the long time limit,
then we get the same solution for s as obtained by taking
β/t � 1 i.e.,

s≡s0 = [
β|x|f0

t
]γ , (13)

where
γ =

1
1 − β

, (14)

but the range of x is now different. We now have,

f0|x| � [(t/β)β ] (15)

instead of Zhong et al’s condition [12], |x| > tβ . Of course,
as in the case of Zhong et al. we shall still have |x| < t. So
the range of x for which our solution for s will hold is:

tβ

f0ββ
� |x| < t. (16)

One could also solve the equation for s by assuming st � β
and this will give the small time behaviour of the system
in which we have no interest at the moment. It is possible
to systematically improve the solution of s by an iterative
procedure but we shall refrain from any such complicated
solutions here. The probability is thus given by

P (x, t) = Ae−(
|x|
ω )γ+βln(

|x|
t )γ

, (17)

where

w =
[

tβ

f0ββ(1 − β)(1−β)

]
. (18)

It is clear that the present solution is different from that
of Zhong et al. However, since |x| < t but larger than
tβ/[f0β

β ], the second term in the exponential of P (x, t)
will be generally smaller than the first term and in that
approximation one would get the same stretched exponen-
tial as obtained by Zhong et al. [12]. But the important
point to note is that the log-term has a positive effect on
the stretching of the exponential since |x| < t and in the
case when β is close to 1 so that β × γ = β/(1 − β) can
become substantially large and then if f0 is sufficiently
small, the present solution can give a significant modifica-
tion to the result of Zhong et al. For example, for a system
with a very large shape exponent γ (β→1) for the diffu-
sion front i.e., in the ballistic limit and for small f0, the
present theory predicts a faster dynamics as compared to
what suggested in [12]. Furthermore, the present solution
suggests a slightly different range of x from that of Zhong
et al. In Table 1 we briefly summarize the results. We
would like to emphasis that although the present solution
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Table 1. The probability P (x, t) together with the range of
the parameter values for its validity. The first two rows are our
results while the third row gives the result of Zhong et al.[12].

t β =
f(s)

f0 ln s
x P (x, t)

t � β 0 < β < 1 tβ

f0ββ � x < t P∼e−(|x|/ω)γ+βln(|x|/t)γ

t � β 0 < β � 1 tβ

f0ββ � x < t P∼e−(|x|/ω)γ

t � β 0 < β ≤ 1 tβ < x < t P∼e−(|x|/ω)γ

for the probability looks only marginally better than that
of [12], it can lead to large deviations when moments and
other physical quantities are considered.

In what follows, we would like to consider a few generic
features instead of considering any specific examples. The
normalization of the probability gives

A =
1
2

( γ

ω

)(
t

ω

)βγ

. (19)

Straight-forward calculation of
〈
x2

〉
immediately gives,

〈
x2

〉
= Γ (3 − 2β)

[
tβ

(f0ββ(1 − β)(1−β))

]2

(20)

in contrast to the result

〈
x2

〉
=

Γ (3 − 3β)
Γ (1 − β)

[
tβ

(f0ββ(1 − β)(1−β))

]2

(21)

obtained with the solution of [12]. One can immediately
see that for β = 1/2, both the equations (20) and (21)
describe the classical diffusion, but the present solution
yields a result that is twice the value given by Zhong
et al. [12]. The classical diffusion constant is now given
by [2/f0

2]. In Figures 1 and 2 we show the bahaviour of
the moment

〈
x2

〉
as a function of t for a few values of β.

It is clear that the growth of the moment increases with
increasing β, more so at large t. In Figures 3–5 we compare
our results for

〈
x2

〉
with those of [12] for different values

of β corresponding to localization, diffusive, and ballistic
regimes. It is clearly evident that our marginally improved
solution for probability density leads to enormous devia-
tions in the bahaviour of the moment

〈
x2

〉
as compared to

that obtained from the result of [12] for all ranges of β at
large t which is the region of interest in the present paper.
At small t however the disagreement becomes smaller and
smaller as β increases.

It is natural to calculate the k-th moment. It is clear
that odd moments will vanish and the even moments can
be written as:

〈
xk

〉
= 2A

∫ ∞

0

xke−[( x
w )γ+ln( x

t )γβ ]dx

=
2A

tγβ

∫ ∞

0

xk+γβe−( x
w )γ

dx. (22)

Fig. 1. The second moment as a function of time t for β = 0.1
and β = 0.3.

Fig. 2. The second moment as a function of time t for β = 0.3
and β = 0.5.

Fig. 3. The second moment as a function of time t for β = 0.5.
The solid line gives our results while the dashed curve refers
to the results of Zhong et al. [12].
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Fig. 4. The second moment as a function of time t for β = 0.5.
The solid line gives our results while the dashed curve refers
to the results of Zhong et al. [12].

Fig. 5. The second moment as a function of time t for β = 0.9.
The solid line gives our results while the dashed curve refers
to the results of Zhong et al. [12].

The above integration is straight-forward and we get

〈
xk

〉
= Γ

(
1 +

k

γ

) [
tβ

(f0ββ(1 − β)(1−β))

]k

. (23)

One can see that for k = 2, equation (23) reduces to (20).
It is interesting to note that though the probability in the
present regime is a stretched exponential in contrast to the
power-law behaviour that occurs in the case of x < tβ , the
growth of moments is however given by a similar power
law.

One may also look at the integrated wave packet which
can be defined as

G(x, t) =
∫ x

−x

dx′P (x′, t), (24)

and we get

G(x, t) =
1

ωβγ
[1 − e−( x

ω )γ

], (25)

while the simple solution of [12] gives

G(x, t) = 2Aw(1 − β)P
(
(1 + β),

(x

ω

)γ)
, (26)

where P(a, z) is the incomplete Gamma function defined
as:

P(a, z) =
∫ z

0

dte−tta−1. (27)

In the limit, x/w >> 1, Zhong et al.’s result becomes

G(x, t) =
Γ (1 + β)
Γ (1 − β)

[
1 − 1

Γ (1 + β)

( x

w

)βγ

e−( |x|
w )γ

]
,

(28)
which in the limit |x| → ∞ saturates to a constant in
contrast to the power law behaviour obtained at short
distances by Ketzmerick et al. Interestingly our result (25)
at large x yields a power law behaviour given by

G(x, t) ∼ t−β2γ (29)

which qualitatively describes a similar behaviour as ob-
tained at short distances by Ketzmerick et al.

Again the spectral function

S(x, s) =
2
π

∫
dt

sinst

t
G(x, t) (30)

calculated with the solution of [12] also saturates to a
constant at large t. However the more improved solution
of the present work suggests a power law bahaviour

S(x, s) ∼ sβ2γ (31)

again in conformity with the short distance behaviour sug-
gested by Ketzmerick et al. [11].

Before we end, it would not be impertinent to worry
about the exact differential equation satisfied by P (x, t).
From equation (11) one can immediately write an equation

∂2βP (x, t)
∂t2β

=
1

f0
2

∂2P (x, t)
∂x2

(32)

which holds of course for three values of β: β = 0.5 (clas-
sical limit), β = 0 (localization limit), and β = 1 (ballistic
limit) and thus one can get exact solutions in these three
cases and study all the relevant aspects.

In conclusion, we have given a fresh and a more rigor-
ous look at the shape of the quantum diffusion front and
obtained a more accurate solution of the probability dis-
tribution than that obtained by Zhong et al. [12]. We have
also pointed out that under usual conditions the stretched
exponential solution of Zhong et al. may be considered as
fairly good but the range of the position coordinates over
which it should be valid will be slightly different from the
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one given by them. We have shown that though the prob-
ability distribution might behave differently at small and
large length scales, the moments of the distribution how-
ever follow similar power laws in both cases. The moment〈
x2

〉
is shown to increase quite strongly with increasing β.

We have calculated the moment
〈
x2

〉
using our probability

density and also using the solution of Zhong et al. for the
diffusive, ballistic and localization regimes and have shown
that in all cases our solution leads to significant deviations
as compared to the results obtained from Zhong et al.’s
solution. We have also shown that the integrated wave
packet exhibits a power law behaviour at long distance in
conformity with the small distance result of Ketzmerick
et al. [11] while the solution of Zhong et al. saturates to
a constant. Finally we have shown that our solution also
suggests a power law behaviour for the spectral function
at long distance in conformity with the small distance be-
haviour predicted by Ketzmerick et al. [11]. Zhong et al.’s
solution again predicts a saturation behaviour in this case.
Thus, although our improved solution for the probability
distribution apparently looks only marginally better that
that of Zhong et al., it gives quantitatively different re-
sults in the case of moments and qualitatively different
results in the case of integrated wave packet and the spec-
tral function.
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the Bilkent University, Ankara.
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